Preliminary communication

PREPARATION OF $\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{HRu}\left(\mu-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}$ AND $\mathrm{Ru}\left(\eta^{1}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}\right)\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{H}$

CHRISTOF E. GRAIMANN and MALCOLM L.H. GREEN
Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR (Great Britain) (Received July 12th, 1984)

Summary

Reduction of anhydrous ruthenium trichloride with sodium sand in pure trimethylphosphine and in a trimethylphosphine/cyclopentene mixture gives the compounds $\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{HRu}\left(\mu-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}$ and $\mathrm{Ru}\left(\eta^{1}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}\right)$ $\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{H}$, respectively.

It has been found that reduction of the transition metal halides $\mathrm{WCl}_{6}, \mathrm{MoCl}_{5}$, TaCl_{5} and ReCl_{5} with sodium sand in pure trimethylphosphine as a reactive solvent gives the highly reactive compounds $\mathrm{W}\left(\mathrm{PMe}_{3}\right)_{4}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right) \mathrm{H}$, $\mathrm{Mo}\left(\mathrm{PMe}_{3}\right)_{5} \mathrm{H}_{2}, \mathrm{Ta}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CHPMe} e_{2}\right)\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)$ and $\operatorname{Re}\left(\mathrm{PMe}_{3}\right)_{5} \mathrm{H}$,

SCHEME 1. (i) Stir at room temperature for $3 \mathrm{~d}, 36 \%$; (ii) trimethylphosphine/cyclopentene ratio $\mathrm{PMe}_{3} / \mathrm{C}_{5} \mathrm{H}_{8}, 1 / 1$, at room temperature for $2 \mathrm{~d}, 22 \%\left(\mathrm{P}=\mathrm{PMe}_{3}\right)$. The other possible structure of 3 is with $\mathbf{H}_{\mathbf{c}}$ and $\mathbf{P}_{\mathbf{d}}$ interchanged.
respectively [1]. Here we describe the reduction by sodium of ruthenium trichloride both in pure trimethylphosphine and in a trimethylphosphine/cyclopentene mixture.

Commercial anhydrous ruthenium trichloride (2 g) and sodium sand (2g) in $\mathrm{PMe}_{3}\left(50 \mathrm{~cm}^{3}\right)$ were stirred at room temperature for two days to give a deep red solution. The NMR spectrum of the impure solids obtained by extraction with petroleum ether of the initial reaction products showed the presence of the three compounds $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{H}_{2}$ (1), $\mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{3}\left(\eta^{2}-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right) \mathrm{H}$ (2) and the binuclear compound $\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{HRu}\left(\mu-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{RuH}\left(\mathrm{PMe}_{3}\right)_{3}$ (3). The compounds 1 and 2 have been described previously [2,3]. Pure 3 was obtained by crystallisation of the solid reaction products from pentane at room temperature as airsensitive, colourless crystals in 36% yield.

Microanalysis* and detailed NMR studies** show 3 to have one of two binuclear structures (Scheme 1) but does not permit distinction between them. The closely related compounds $\left(\mathrm{PMe}_{3}\right)_{2} \mathrm{Rh}\left(\mu-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{Rh}\left(\mathrm{PMe}_{3}\right)_{2}$ and $\left(\mathrm{PMe}_{3}\right) \mathrm{HPt}\left(\mu-\mathrm{CH}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{PtH}\left(\mathrm{PMe}_{3}\right)_{2}$ have recently been described [4,5].

Reduction of RuCl_{3} with sodium sand in a $\mathrm{PMe}_{3} /$ cyclopentene (1/1) mixture gives a dark solid, from the pentane extract of which air-sensitive colourless crystals separate at room temperature. Microanalysis and especially NMR spectra show the product to be $\mathrm{Ru}\left(\eta^{1}-\mathrm{C}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}\right)\left(\mathrm{PMe}_{3}\right)_{4} \mathrm{H}(4)$. Double-resonance experiments showed the connectivity of the resonances assigned to the C_{5}-ring hydrogens $\mathrm{f}, \mathrm{g}, \mathrm{g}^{\prime}, \mathrm{h}, \mathrm{h}^{\prime}, \mathrm{i}$ and i^{\prime} (Scheme 1).

The insertion of the ruthenium into the olefinic $\mathrm{C}-\mathrm{H}$ of cyclopentene is unusual: we assume that the reaction proceeds via an intermediate η^{2}-cyclopentene compound in a manner somewhat analogous to the formation of $\mathrm{Ru}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$ $\left(\mathrm{PMe}_{3}\right) \mathrm{PhH}$ from the intermediate $\mathrm{Rh}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PMe}_{3}\right)\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{6}\right)$ [6].

We thank the British Council for an award (to C.E.G).

[^0]
References

1 V.C. Gibson, P.D. Grebenik and M.L.H. Green, J. Chem. Soc., Chem. Commun., (1983) 1101.
2 R.A. Jones, G. Wilkinson, I.J. Colquohoun, W. McFarlane, A.M.R. Galas and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1980) 2480.
3 H. Werner and R. Werner, J. Organomet. Chem., 209 (1981) C60.
4 From Pt atoms and PMe_{3}, M.L.H. Green, P.M. Hare and M. Wolfer, unpublished observations.
5 V.V. Mainz and R.A. Andersen, Organometallics, 3 (1984) 675.
6 W.D. Jones and F.J. Feher, J. Am. Chem. Soc., 104 (1984) 1650.

[^0]: *Analytical data. 3: Found: $\mathrm{C}, 34.62 ; \mathrm{H}, 8.73$. $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{P}_{\mathrm{g}} \mathrm{Ru}$ calcd.: $\mathrm{C}, 34.98 ; \mathrm{H}, 8.81$. IR (Nujol mull) $\nu(\mathrm{Ru}-\mathrm{H}) 1795 \mathrm{~s} \mathrm{~cm}^{-1}$. 4: Found: C, 42.30; H, 9.22. $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{P}_{4} \mathrm{Ru}$ calcd.: C, 42.53; H, 9.23\%. IR (Nujol, mull) $\nu(\mathrm{Ru}-\mathrm{H}) 1850 \mathrm{~m} \mathrm{~cm}^{-1}$.
 **NMR data, in $\mathrm{C}_{6} \mathrm{D}_{6}$, labelling of atoms are given in Scheme 1: $3,{ }^{1} \mathrm{H}$ NMR: $\delta 2.83,2.59$ (2 H , dddd, ABsystem, $\Delta \nu 59.52$), 2.59 ($^{2} J\left(\mathrm{H}_{\mathrm{a}, \mathrm{b}}-\mathrm{P}_{\mathrm{a}}\right) 9.12,{ }^{3} J\left(\mathrm{H}_{\mathrm{a}, \mathrm{b}}-\mathrm{P}_{\mathrm{c}}\right) 1.4,{ }^{2} J\left(\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{b}}\right) 15.87, \mathrm{CH}_{2}$ (a and b)), 1.24 ($9 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{H}-\mathrm{P}) 6.43, \mathrm{P}-\mathrm{Me}_{3}$ (a or b or c)), 0.21 ($3 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{H}-\mathrm{P}) 7.71, \mathrm{P}-\mathrm{Me}_{3}$ (d or e)), 1.03 ($9 \mathrm{H}, \mathrm{d}$, ${ }^{2} J(\mathrm{H}-\mathrm{P}) 5.77, \mathrm{P}-\mathrm{Me}_{3}$ (a or b or c), $0.94\left(3 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{H}-\mathrm{P}) 5.66, \mathrm{P}-\mathrm{Me}_{3}\right.$ (d or e)), $0.86\left(9 \mathrm{H}, \mathrm{d},{ }^{2} J(\mathrm{H}-\mathrm{P})\right.$ $7.84, \mathrm{P}-\mathrm{Me}_{3}$ (a or b or c$)$), $-8.18\left(1 \mathrm{H}, \mathrm{d}\right.$ quar, ${ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}_{\mathrm{a}, \mathrm{b}, \mathrm{c}, ~ c i s)} \mathbf{2 7 . 2 0},{ }^{2} J\left(\mathrm{H}_{\mathrm{c}}-\mathrm{P}_{\mathrm{d}}, \operatorname{trans}\right) 96.90, \mathrm{Ru}-\mathrm{H}_{\mathrm{c}}\right)$ ppm.
 ${ }^{31} P$ NMR: $\delta 17.9$ ($1 \mathrm{P}, \mathrm{dt},{ }^{2} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{d}} 23.20,{ }^{2} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{b}, \mathrm{c}}\right) 33.3, \mathrm{P}_{\mathrm{a}}\right),-0.42,-3.79$ (2P, dddd, AB-system, ${ }^{2} J\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{c}}\right) 258.59,{ }^{2} J\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{d}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{d}}\right)={ }^{2} J\left(\mathrm{P}_{\mathrm{a}}-\mathrm{P}_{\mathrm{d}}\right)$ 23.20, ${ }^{2} J\left(\mathrm{P}_{\mathrm{b}, \mathrm{c}}-\mathrm{P}_{\mathrm{a}}\right)$ 33.3. $\left.\Delta \nu 341.02, \mathrm{P}_{\mathrm{c}}, \mathrm{P}_{\mathrm{b}}\right)$, -14.06 (${ }^{1 P} .{ }^{2} J\left(P_{d}-P_{a}\right)={ }^{2} J\left(P_{d}-P_{b, c}\right)$ 23.20. $\left.P_{d}\right)$ ppm.
 ${ }^{13} \mathrm{C}$ NMR: $641.79\left(1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{C}-\mathrm{P}) 28.4\right.$, additional splitting of 3.2), 26.49 (3C, $\mathrm{d},{ }^{1} J(\mathrm{C}-\mathrm{P}) 26.5$, additional splitting of 2.3), $25.25\left(1 \mathrm{C}, \mathrm{dt},{ }^{1} J(\mathrm{C}-\mathrm{P}) \mathbf{2 6 . 4},{ }^{2} J(\mathrm{C}-\mathrm{P}) 6.4\right), 22.25\left(3 \mathrm{C}, \mathrm{dt},{ }^{1} J(\mathrm{C}-\mathrm{P}) 19.99\right.$, ${ }^{2} J(\mathrm{C}-\mathrm{P}) 4.20$), 21.63 (3C, d, ${ }^{1} J(\mathrm{C}-\mathrm{P}) 17.60$), 19.7 ($1 \mathrm{C}, \mathrm{m}$) ppm.
 7.23, $\mathrm{H}_{\mathrm{h}, \mathrm{h}}$), $1.24\left(18 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}(\mathrm{H}-\mathrm{P}) 2.57, \mathrm{P}_{\mathrm{b}}-\mathrm{Me}_{3}\right), 1.17\left(9 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{H}-\mathrm{P}) \mathrm{5} .63, \mathrm{P}_{\mathrm{a}}\right.$ or $\left.\mathrm{P}_{\mathrm{c}}\right), 1.15(9 \mathrm{H}, \mathrm{d}$, ${ }^{3} J(H-P) 5.71, P_{a}$ or $\left.P_{c}\right),-9.39\left(1 H, d\right.$ quar, ${ }^{2} J\left(H_{e}-\mathrm{P}_{\mathrm{b}, \mathrm{c}, \mathrm{d}}\right) 26.15,{ }^{2} J\left(\mathrm{H}_{\mathrm{e}}-\mathrm{P}_{\mathrm{a}}\right.$, trans $\left.) 94.06, \mathrm{H}_{\mathrm{e}}\right)$ ppm. ${ }^{31}$ P NMR: -5.4 (2 P, broad ${ }^{a}, P_{b}$), $-15.3\left(1 P\right.$, broad $^{a}, P_{c}$ or $\left.P_{a}\right),-20.6\left(1 P\right.$, broad $^{a}, P_{a}$ or $\left.P_{c}\right)$ ppm. ${ }^{a} A l l$ resonances showed partially resolved fine structure.

