Journal of Organometallic Chemistry, 275 (1984) C12–C14 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PREPARATION OF $(PMe_3)_3HRu(\mu-CH_2PMe_2)_2RuH(PMe_3)_3$ AND Ru $(\eta^1-C=CH(CH_2)_3)(PMe_3)_4H$

CHRISTOF E. GRAIMANN and MALCOLM L.H. GREEN Inorganic Chemistry Laboratory, South Parks Road, Oxford, OX1 3QR (Great Britain) (Received July 12th, 1984)

Summary

Reduction of anhydrous ruthenium trichloride with sodium sand in pure trimethylphosphine and in a trimethylphosphine/cyclopentene mixture gives the compounds $(PMe_3)_3HRu(\mu-CH_2PMe_2)_2RuH(PMe_3)_3$ and $Ru(\eta^1-C=CH(CH_2)_3)-(PMe_3)_4H$, respectively.

It has been found that reduction of the transition metal halides WCl_6 , $MoCl_5$, $TaCl_5$ and $ReCl_5$ with sodium sand in pure trimethylphosphine as a reactive solvent gives the highly reactive compounds $W(PMe_3)_4(\eta^2-CH_2PMe_2)H$, $Mo(PMe_3)_5H_2$, $Ta(PMe_3)_3(\eta^2-CHPMe_2)(\eta^2-CH_2PMe_2)$ and $Re(PMe_3)_5H$,

SCHEME 1. (i) Stir at room temperature for 3 d, 36%; (ii) trimethylphosphine/cyclopentene ratio PMe_3/C_5H_8 , 1/1, at room temperature for 2 d, 22% (P = PMe₃). The other possible structure of 3 is with H_c and P_d interchanged.

0022-328X/84/\$03.00 © 1984 Elsevier Sequoia S.A.

respectively [1]. Here we describe the reduction by sodium of ruthenium trichloride both in pure trimethylphosphine and in a trimethylphosphine/cyclopentene mixture.

Commercial anhydrous ruthenium trichloride (2 g) and sodium sand (2 g) in PMe₃ (50 cm³) were stirred at room temperature for two days to give a deep red solution. The NMR spectrum of the impure solids obtained by extraction with petroleum ether of the initial reaction products showed the presence of the three compounds Ru(PMe₃)₄H₂ (1), Ru(PMe₃)₃(η^2 -CH₂PMe₂)H (2) and the binuclear compound (PMe₃)₃HRu(μ -CH₂PMe₂)₂RuH(PMe₃)₃ (3). The compounds 1 and 2 have been described previously [2,3]. Pure 3 was obtained by crystallisation of the solid reaction products from pentane at room temperature as airsensitive, colourless crystals in 36% yield.

Microanalysis* and detailed NMR studies** show 3 to have one of two binuclear structures (Scheme 1) but does not permit distinction between them. The closely related compounds $(PMe_3)_2Rh(\mu-CH_2PMe_2)_2Rh(PMe_3)_2$ and $(PMe_3)HPt(\mu-CH_2PMe_2)_2PtH(PMe_3)_2$ have recently been described [4,5].

Reduction of RuCl₃ with sodium sand in a PMe₃/cyclopentene (1/1) mixture gives a dark solid, from the pentane extract of which air-sensitive colourless crystals separate at room temperature. Microanalysis and especially NMR spectra show the product to be $\text{Ru}(\eta^1 \cdot C = CH(CH_2)_3)(PMe_3)_4H$ (4). Double-resonance experiments showed the connectivity of the resonances assigned to the C₅-ring hydrogens f,g,g',h,h',i and i' (Scheme 1).

The insertion of the ruthenium into the olefinic C—H of cyclopentene is unusual: we assume that the reaction proceeds via an intermediate η^2 -cyclopentene compound in a manner somewhat analogous to the formation of Ru(η -C₅Me₅)-(PMe₃)PhH from the intermediate Rh(η -C₅Me₅)(PMe₃)(η^2 -C₆H₆) [6].

We thank the British Council for an award (to C.E.G).

^{*}Analytical data. 3: Found: C, 34.62; H, 8.73. $C_{12}H_{30}P_8Ru$ calcd.: C, 34.98; H, 8.81. IR (Nujol mull) $\nu(Ru-H)$ 1795s cm⁻¹. 4: Found: C, 42.30; H, 9.22. $C_9H_{20}P_4Ru$ calcd.: C, 42.53; H, 9.23%. IR (Nujol, mull) $\nu(Ru-H)$ 1850m cm⁻¹.

^{**}NMR data, in C_6D_6 , labelling of atoms are given in Scheme 1: 3, ¹H NMR: δ 2.83, 2.59 (2H, dddd, ABsystem, $\Delta\nu$ 59.52), 2.59 (²J(H_{a,b}-P_a) 9.12, ³J(H_{a,b}-P_c) 1.4, ²J(H_a-H_b) 15.87, CH₂ (a and b)), 1.24 (9H, d, ²J(H-P) 6.43, P-Me₃ (a or b or c)), 0.21 (3H, d, ²J(H-P) 7.71, P-Me₃ (d or e)), 1.03 (9H, d, ²J(H-P) 5.77, P-Me₃ (a or b or c)), 0.94 (3H, d, ²J(H-P) 5.66, P-Me₃ (d or e)), 0.86 (9H, d, ²J(H-P) 7.84, P-Me₃ (a or b or c)), -8.18 (1H, d quar, ²J(H_c-P_{a,b,c}, cis) 27.20, ²J(H_c-P_d, trans) 96.90, Ru-H_c) ppm.

³¹P NMR: δ 17.9 (1P, dt, ²J(P_a-P_d 23.20, ²J(P_a-P_{b,c}) 33.3, P_a), -0.42, -3.79 (2P, dddd, AB-system, ²J(P_b-P_c) 258.59, ²J(P_c-P_d) = ²J(P_b-P_d) = ²J(P_a-P_d) 23.20, ²J(P_{b,c}-P_a) 33.3, $\Delta\nu$ 341.02, P_c, P_b), -14.06 (IP, ²J(P_d-P_a) = ²J(P_d-P_{b,c}) 23.20, P_d) ppm. ¹³C NMR: δ 41.79 (1C, d, ¹J(C-P) 28.4, additional splitting of 3.2), 26.49 (3C, d, ¹J(C-P) 26.5, addi-

¹³C NMR: δ 41.79 (1C, d, ¹J(C-P) 28.4, additional splitting of 3.2), 26.49 (3C, d, ¹J(C-P) 26.5, additional splitting of 2.3), 25.25 (1C, dt, ¹J(C-P) 26.4, ²J(C-P) 6.4), 22.25 (3C, dt, ¹J(C-P) 19.99, ²J(C-P) 4.20), 21.53 (3C, d, ¹J(C-P) 17.60), 19.7 (1C, m) ppm.

^{4, &}lt;sup>1</sup>H NMR: δ 5.7 (1H, v br s, H_f), 2.63 (4H, br s, H_{g,g',i,i}'), 2.01 (2H, quin, ³J(H_{h,h}'-H_{g,g',I,I}') 7.23, H_{h,h}'), 1.24 (18H, t, ³J(H–P) 2.57, P_b-Me₃), 1.17 (9H, d, ³J(H–P) 5.63, P_a or P_c), 1.15 (9H, d, ³J(H–P) 5.71, P_a or P_c), -9.39 (1H, d quar, ²J(H_e-P_{b,c,d}) 26.15, ²J(H_e-P_a,trans) 94.06, H_e) ppm. ³¹P NMR: -5.4 (2P, broad^a, P_b), -15.3 (1P, broad^a, P_c or P_a), -20.6 (1P, broad^a, P_a or P_c) ppm. ^aAll resonances showed partially resolved fine structure.

References

- 1 V.C. Gibson, P.D. Grebenik and M.L.H. Green, J. Chem. Soc., Chem. Commun., (1983) 1101.
- 2 R.A. Jones, G. Wilkinson, I.J. Colquohoun, W. McFarlane, A.M.R. Galas and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1980) 2480.
- 3 H. Werner and R. Werner, J. Organomet. Chem., 209 (1981) C60.
 4 From Pt atoms and PMe₃, M.L.H. Green, P.M. Hare and M. Wolfer, unpublished observations.
- V.V. Mainz and R.A. Andersen, Organometallics, 3 (1984) 675.
 W.D. Jones and F.J. Feher, J. Am. Chem. Soc., 104 (1984) 1650.